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Abstract 

In this paper we investigate the simple logical 
properties of contexts. We describe both the syn- 
tax and semantics of a general propositional lan- 
guage of context, and give a Hilbert style proof 
system for this language. A propositional logic 
of context extends classical propositional logic in 
two ways. Firstly, a new modality, ist(K, 4), is in- 
troduced. It is used to express that the sentence, 
4, holds in the context 6. Secondly, each context 
has its own vocabulary, i.e. a set of propositional 
atoms which are defined or meaningful in that con- 
text. The main results of this paper are the sound- 
ness and completeness of this Hilbert style proof 
system. We also provide soundness and complete- 
ness results (i.e. correspondence theory) for vari- 
ous extensions of the general system. 

Introduction 
In this paper we investigate the simple logical proper- 
ties of contexts. Contexts were first introduced into AI 
by John McCarthy in his Turing Award Lecture, [Mc- 
Carthy, 19871, as an approach which might lead to the 
solution of the problem of generality in AI. This prob- 
lem is simply that existing AI systems lack generality. 

Since then, contexts have found a large number of 
uses in various areas of AI. R. V. Guha’s doctoral dis- 
sertation [Guha, 19911 under McCarthy’s supervision 
was the first in-depth study of context. Guha’s con- 
text research was primarily motivated by the Cyc sys- 
tem [Guha and Lenat, 19901 (a large common-sense 
knowledge-base currently being developed at MCC) . 
Without using contexts it would have been virtually 
impossible to create and successfully use a knowledge 
base of the size of Cyc. 

Large knowledge bases are not the only place where 
contexts have found practical use. The knowledge 
sharing community has accepted the need for expli- 
cating context when transferring information from one 
agent to another. Currently, proposals for introduc- 
ing contexts into the Knowledge Interchange Format or 
KIF [Genesereth and Fikes, 19921 are being considered. 
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Furthermore, it seems that the context formalism can 
provide semantics for the process of translating facts 
into KIF and from KIF, one of the key tasks that the 
knowledge sharing effort is facing. 

The meaning of an utterance depends on the context 
in which it is uttered. Computational linguists have 
developed various ways of describing this context. For 
example, Barbara Grosz in her Ph.D. thesis, [Grosz, 
19771, implicitly captures the context of a discourse 
by focusing on the objects and actions which are most 
relevant to the discourse. This representation is similar 
to an ATMS context [de Kleer, 19861, which is simply 
a list of propositions that are assumed by the reasoning 
system. 

However till now no formal logical explication of con- 
texts has been given. The aim of this paper is to rectify 
this deficiency. We describe both the syntax and se- 
mantics of a general propositional language of context, 
and give a Hilbert style proof system for this language. 
The main results of this paper are the soundness and 
completeness of this Hilbert style proof system. We 
also provide soundness and completeness results (i.e. 
correspondence theory) for various extensions of the 
general system. 

Notation 

We use standard mathematical notation. If X and Y 
are sets, then X +, Y is the set of partial functions 
from X to Y. I?(X) is the set of subsets of X. X* is the 
set of all finite sequences, and we let 3 = [xi, . . . , ~~1 
range over X*. 6 is the empty sequence. We use the 
infix operator * for appending sequences. We make 
no distinction between an element and the singleton 
sequence containing that element. Thus we write z *ICI 
instead of z * [ICI]. As is usual in logic we treat X* 
as a tree (that grows downward). ~1 < ~0 2 E iff ~1 
properly extends 30 (i.e. (3~ E X* - {E})(z~ = ZO*$). 
We say Y C X* is a subtree rooted at g to mean 

1. $i E Y and (VZ E Y)(z 5 y) 

2. (Vz E Y)(Vw E X”)(x 5 a 5 Q + ti E Y) 
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The General System 
A propositional logic of context extends classical 
propositional logic in two ways. Firstly, a new modal- 
ity, ist(K, 4), is introduced. It is used to express that 
the sentence, 4, holds in the context K. Secondly, each 
context has its own vocabulary, i.e. a set of proposi- 
tional atoms which are defined or meaningful in that 
context. The vocabulary of one context may or may 
not overlap with another context. 

Syntax 
We begin with two distinct countably infinite sets, R 
the set of all contexts, and EO the set of propositional 
atoms. The set, w, of well-formed formulas (wffs) is 
built up from the propositional atoms, p, using the 
usual propositional connectives (negation and implica- 
tion) together with the ist modality. 

Definition (W): 

The operations A, V and ++ are defined as abbrevia- 
tions in the usual way. The term literal is used to refer 
to a propositional atom or the negation of a proposi- 
tional atom. We use 4$ to represent either the formula 
4, or its negation 14. We also use the following abbre- 
viations: 

ist(X,qS) := ist(bcl,ist(m,...,ist(h,+))) 

ist*(iZ,+) := fist(6~,fist(z.2,-.. kiiSt(fin,q5)-.-)) 

when E is the context sequence [IE~, ~2, . . . , ~~1. In the 
definition of ist * all the ist’s need not be of the same 
parity. PROP is the set of all well formed formulas 
which do not contain ist’s. If $J is a formula containing 
distinct atoms pi,. . . ,pn, then we write $J(&, . . . , &) 
for the formula which results from $J by simultaneously 
replacing all the occurrences of pi in $ by 4;. We say 
that $+A,. . . , Ad is an instance of $. 

Semant its 
We begin with a system which makes as few semantic 
restrictions as possible. Other systems are obtained by 
placing restrictions on the models. The semantics of 
the general system has the following three features: 

Firstly, the nature of a particular context may itself 
be context dependent. For example, in the context of 
the 1950’s, the context of car racing is different than 
than the context of car racing viewed from today’s con- 
text. This leads naturally to considering sequences of 
contexts rather than a solitary context. We refer to this 
feature of the system as non-flatness. It reflects on the 
intuition that what holds in a context can depend on 
how this context has been reached, i.e. from which per- 
spective it is being viewed. For example, non-flatness 
will be desirable if we represent the beliefs of an agent 
as the sentences which hold in a context. A system of 
flat contexts can easily be obtained by placing certain 

restrictions on what kinds of structures are allowed as 
models, as well as enriching the axiom system. 

Secondly, a context is modelled by a set of truth as- 
signments, that describe the possible states of affairs of 
that context. Therefore the ist modality is interpreted 
as validity: ist(K, p) is true iff the propositional atom 
p is true in all the truth assignments associated with 
context tc. Treatment of ist as validity corresponds to 
Guha’s proposal for context semantics, which was mo- 
tivated by the Cyc knowledge base. A system which 
models a context by a single truth assignment, thus 
interprets ist as truth, can be obtained by placing 
simple restrictions on the definition of a model, and 
enriching the set of axioms. 

Thirdly, since different contexts can have different 
vocabularies, some propositions can be meaningless in 
some contexts, and therefore the truth assignments de- 
scribing the state of affairs in that context need to be 
partial. 

Definition (9X): In this system a model, ??X, will 
be a function which maps a context sequence E E lK* 
to a set of partial truth assignments, 

.!I2 E lEc* --+P P(P +-P 2), 

with the added conditions that 
1. (VE)(V’vi, z4 E !B@))(Dom(vi) = Dom(v2)) 
2. Dam(m) is a subtree of K* rooted at some context 

sequence Kc. 
We write EM to denote the set of partial truth as- 
signments 9X(E). Note that Em can be empty. The 
collection of all such models will be denoted by Ml. 

We could have assumed the existence of a fixed out- 
ermost context which would result in Dom(fm) being 
a tree rooted at empty sequence E (i.e. the fixed out- 
ermost context). This would result in slightly simpler 
notation and proofs. However, although more com- 
plicated, our definition is based on the intuition that 
there is no outermost context. 

Vocabularies The truth assignments in our model 
are partial. The atoms which are given a truth value 
in a context are defined by a relation Vocab E lK* x IED. 

Definition (Vocub of tm): We define a function 
Vocub : Ml + P(IK* x p) which given a model returns 
the vocabulary of the model: 

Vocub(9X) := {<E, p> ] E E Dom(9X) and p E Dom(!?Q))} 

We say that a model iDI is cZussicuZ on vocabulary Vocab 
iff Vocab C Vocub(?DQ. 

The notion of vocabulary can also be applied to sen- 
tences. Intuitively, the vocabulary of a sentence relates 
a context sequence to the atoms which occur in the 
scope of that context sequence. In the definition we 
also need to take into account that sentences are not 
given in isolation but in a context. 
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Definition (Vocab of 4 in E): We define a function 
Vocab : K* x !4’ + P(K* x P) which given formula 
in a context, returns the vocabulary of the formula. 
Vocab(E, 4) is defined inductively by: 

It is extended to sets of formulas in the obvious way. 
Note that it is only in the propositional case that 

we can carry out this static analysis of the vocabulary 
of a sentence. It will not be possible in the quantified 
versions. Also note that our definition of vocabulary of 
a sentence is somewhat different from Guha’s notion of 
definedness. Guha proposes to treat ist(K, 4) as false 
if 4 is not in the vocabulary of the context K. 

Satisfaction We can think of partial truth assign- 
ments as total truth assignments in a three-valued 
logic. Our satisfaction relation then corresponds to 
Bochvar’s three valued logic [Bochvar, 19721, since an 
implication is meaningless if either the antecedent or 
the consequent are meaningless. We chose Bochvar’s 
three valued logic because we intend meaningfulness to 
be interpreted as syntactic meaningfulness, rather than 
semantic meaningfulness along the lines of Kleene’s 
three valued logic [Kleene, 19521. 

Definition (b) : 
If v E Ed and Vocab(E,cp) G Vocub(iDl), then 

9JZ,vk,piffv(p)=l, pEP 
!X$~~~+iffnot%R,v&+ 
~,v~,~~~iff~,y~~~implies~,v~,Ijl 

9X, u k, ist(Ki, 4) iff Vvl E (E*KI)~ 9X, VI j=z*Kl 4 

In the last point note that i? * ~1 E Dom(9.X) since 
the Dom(!.?X) is a rooted subtree, and Vocab(E, 4) C 
Vocub(m). 

Wewritet)171+,4iffVvEiP ?JX,Ykf+. 

Formal System 
We now present the formal system. To do this we fix 
a particular vocabulary, Vocab c K* x P, and define 
a provability relation, t-G ‘Ocab. Since Vocab will re- 
main fixed throughout we omit explicitly mentioning it 
and write l-,4 instead. Similarly, to avoid constantly 
stating lengthy side conditions we make the following 
convention. 

Definedness Convention: In the sequel, when- 
ever we write l--,4 we will be assuming implicitly that 
Vocab(E, 4) C Vocab. 

Axioms and inference rules are given in table 1. Note 
that the rules of inference preserve the (definedness 
convention). 

Assuming that our system was limited to only one 
context, the rule (CS) would be identical to the rule 
of necessitation in normal systems of modal logic, and 
axiom schema (IX) would be identical to the the stan- 
dard axiom schema K. Thus in the single context case, 
ignoring axiom schemas (A+) and (A-), our formal 
system is identical to what is usually called the normal 
system of modal logic, characterized by (PL), (NIP), 
(K), and the rule of necessitation. The axiom schemas 
(A+) and (A-) are needed in order to accommodate 
the validity aspect of the ist modality. It turns that 
they derivable in the system which treats ist as truth 
and does not allow inconsistent contexts. 

Provability A formula q5 is provable in context K 
with vocabulary Voca b (formally l-z 4) iff I-, 4 is an in- 
stance of an axiom schema or follows from provable for- 
mulas by one of the inference rules; formally, iff there 
is a sequence [ l-x1 41, . . . , l-z, &] such that En = E, 
and A = 4 and for each i 5 n either l--z% +i is an 
axiom, or is derivable from the earlier elements of the 
sequence via one of the inference rules. In the case 
of assumptions, formula 4 is provable from assump- 
tions T in context Ee with vocabulary Vocab (formally 
T ,Joca b or again taking into account that Vocab is 
fixed T &, 4) iff there are formulas 41,. . . ,& E T, 
such that l-z0 (41 A . . . A &) --+ 4. Note that due to 
the definedness convention if T l-z, 4 then Vocab(T) E 
Voca b. 

Consequences 
Some simple theorems and derivable rules of the sys- 
tern are: 

(C) I--, ist(Ki,$) A ist(Ki,ti,) -+ ist(Ki,+A+) 

(Or) I-.C ist(Ki,+) V ist(Ki,1CI) --+ ist(Ki,+V+) 

(M) t-, ist(m, 4 A $1 --+ ist(Ki, 4) A ist(ni, $J) 

(K*) l-c ist(z, 4 -+ $J) + ist(c, 4) --+ is@‘, $> 

A slightly deeper result is that any formula is prov- 
ably equivalent to one in a certain syntactic form. This 
equivalence plays an important role in the complete- 
ness proof. 

Definition (CNF) : A formula 4 is in conjunctive 
normal form (CNF) iff it is of the form Ei A E2 A - - . A 
EI,, and each Ei is of the form oil V ai V - - - V aiTz, 
where each oij is either a literal, or ist*(i?, ,0) for some 
disjunction of literals ,0. Note that i and k can be 1. 

Lemma (CNF): For any formula 4, context se- 
quence E, there exists a formula $* which is in CNF, 
such that l-z+ H +*. 
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:(PL) )-F 4 provided 4 is an instance of a tautology. 

(K) t-, ist(m, 4 -+ @> +ist(1~1,q5)-+ ist(Kl,$) 

(A,) t--s;r ist(/cl,ist(Kz,qS)V+)+ ist(m,ist(K2,4))V ist(m,$,) 

(A-.) I-, ist(Kl, list(K2,~$) V 7j3) --+ ist(Ki, ++2,+>> V ist(Ki, $) 

WY 
h& ~id--+ti hT*/q 4 

bb 
w 

t-z isth, 4) 

Table 1: Axioms and Inference Rules 

Theorem (soundness) : If I-F~, then for all mod- 
els f)32 classical on Vocab ?JX k=s;r 4. If T I-F 4, then for 
all models 9.X classical Vocab if for all 1c, E T 9X j=~ 
$J, then 9X +E 4. 

Completeness 
We begin by introducing some concepts needed to state 
the completeness theorem. 

Definition (satisfiability): A set of formulas T is 
satisfiable in context E with vocabulary Vocab iff there 
exists a model !JX classical on Vocab, such that for all 
4 E T, i-m +F 4. 

Definition (consistency): A formula q5 is consis- 
tent in ET with Vocab, where Vocab@, 4) C Vocab iff 
not l-x 14. A finite set T is consistent in 7F with Vocab 
iff /x\ T is consistent in E with Vocab. An infinite set T 
is consistent in in with Vocab iff every finite subset of T 
is consistent in i? with Vocab. A set T is inconsistent 
in E with Vocab iff the set T is not consistent in 7Z with 
Voca b. 

A set T is maximally consistent in E with Vocab iff 
T is consistent in E with Vocab and for all 4 $ T such 
that Vocab(& 4) 2 Vocab, T U {4} is inconsistent in E 
with Vocab. 

As is usual, an important part of the completeness 
proof is the Lindenbaum lemma allowing any consis- 
tent set of wffs to be extended to a maximally consis- 
tent set. 

Lemma (Lindenbaum) : If T is consistent in E 
with Vocab, then T can be extended to a maximally 
consistent set To in E with Vocab. 

Now we proceed to state and prove the completeness 
of the system. 

Theorem (completeness) : For any set of formulas 
T, T is consistent in Kc with Vocab iff T is satisfiable 
in i?e with Vocab. 

Proof (completeness) : Assume T is consistent in Clearly, if 4 E T then also 4 E To and therefore by 
Kc with Vocab. By the (Lindenbaum lemma) we can tr uth lemma  we get mo  b z, 6 q  completeness 

extend T to a maximally consistent set To. From To we 
will construct the model 9X0. For each i? = Ec * C E JK* 
define 

Tic+ := (4 I To ho ist(?, $), 4 E PROP}. 

Lemma (T,+): T,+ is closed under logical con- 
sequence: for all 4 where Vocab(i?, 4) & Vocab, if 4 
tautologically follows from T,+ then 4 E T,+. 

Note that T,+ need not be either maximally consistent 
or even consistent. Now, using only the sets T,+ of 
formulas from PROP, we will define a model ?JXc for 
the set of formulas To. We define the domain of 9X0 

Dom(!JXc) := {El E 5 ito, 32 E Dom(Vocab), TC’ 5 I?} 

and for all i? E Dom(!JJZc) 

i%&(Z) := {v 1 Dam(v) = Vocab@), VC#I E Tn+,v($) = 1). 

In the above, V is the unique homomorphic extension 
of v with respect to the propositional connectives. To 
see that 9X0 as defined is a model, we first note that 
it clearly meets condition 1, since all the truth assign- 
ments associated with a context must have the same 
domain. Condition 2 is met since Dom(9Xo) as defined 
is a subtree rooted at 7~0. Note that if T,+ is empty 
(which corresponds to the case where Vocab(K) = S), 
then 9&(E) is a singleton set, whose only member is 
the empty truth assignment. Finally, to establish com- 
pleteness we need only prove the truth lemma. The 
proof of the truth lemma is based on the CNF con- 
struction and is the novel aspect of this completeness 
proof. 

, 

Lemma (truth): 
For any 4 such that Vocab(Ec, 4) E Vocab, 

4 E To 8 m0 bzo 4. 
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Before we give the proof of the truth lemma, we need 
to state a property of the model 9X0 which is needed 
in the ist case of the truth lemma. 

Lemma (930): Let 9.X0 be a model as defined from 
To in the completeness proof. Then for all 4 E PROP 
where Vocab(zo * Z, 4) s Vocab, 

To l--z0 ist@, 4) iff for all v E 9JZc(Es *C) ~(4) = 1. 

A frequently used instance of the .9X0 lemma is that 
To t-+, ist(?, 4 A +) iff fme(Ee * i?) = 0, for all 4 sat- 
isfying the (definedness condition). 

Proof (truth lemma): Instead of proving 4 E To 
iff ?3Xe FE0 4 we will prove the statement 

(TL) $ is in CNF implies (+!J E To iff 9,7&o +Fo $) . 

To see that the former follows from the latter, assume 
q5 E To. By the (CNF lemma), there exists formula 
$* in CNF such that I-,, 4 H 4*. Using maximal 
consistency of To, it follows that +* E To. Therefore 
by (TL) it must be the case that 9X0 I=,, 4*. Our 
logic is sound: 930 FE0 4* iff 9X0 bn, 4, and thus 
we conclude that ?JXc bTzb 4. We can simply reverse 
the steps of the argument to prove the other direction 
of the biconditional. 

We prove the (TL) by induction on the structure of 
the formula $J. In the base case $J is an atom, and thus 
in CNF. Prom the definition of ?JXo(Ee) it follows that 
p E To H 9X0 kc, p. In proving the inductive step we 
first examine $J = x V CL. The inductive hypothesis is 
that the lemma is true for formulas x and ,x. Assume 
x V 1-1 is in CNF. Then both x and p must also be in 
CNF. Since To is maximally consistent x V p E To iff 
either x E To or p E To. By the inductive hypothesis 
this will be true iff either ?3Xs bEo x or 9.X0 FE0 p, and 
by the definition of satisfaction iff 9X0 I=,, x V p. The 
inductive step for conjunction and negation is similar. 
We make use of the fact that if x A p is in CNF, then 
so are both x and ~1; and if lx is in CNF, then so is 
x. The interesting case is when $J is an ist. Assume 
that $J is in CNF. Then II, must be of the form 

$ = ist*(i?,x), 

where x is a disjunction of literals. The context se- 
quence c will sometimes be written as pi*. . . * K~. We 
will examine two cases, depending on whether or not 
any of the sets of sentences T(E~*~‘)+ where C 5 2, are 
inconsistent. The sets T(E,,*Ft)+, where i3 < 2, are all 
consistent iff the formula 

(D,) ist(Z, 14) + list@, 4) 

is in To, for any wff 4 which satisfies the definedness 
condition. The proof of this is identical to the sound- 
ness and completeness proofs of a context system with 

axiom schema (D) w.r.t. the set of consistent models, 
dealt with shortly. Formula (D,) is equivalent to 

for all 4 satisfying the definedness condition; the proof 
carries over from normal systems of modal logic. Now 
we state a useful consequence of (D,) ‘s. 

Lemma (Dc): 
Let c be ~1 * -. a * ICY. If D(,,,...,,n-,~ E To, then 

ist*(?, 4) E To iff f ist@, 4) E To 
for any formula 4 which satisfies the definedness con- 
vention. The sign on the right hand side is positive iff 
there is an even number of negations in the ist* on 
the left hand side. 

Now we examine the two cases need to prove the 
inductive step for ist of the truth lemma. 

Case D(,l,...,,,-l) E TO: In this case we assume 
D( K,l*“‘*Kn-l 
lemma: 

) E To and that $ E To. Then by the D, 

ist*(iZ, x) E To iff f ist(?, x) E To 

We only include the positive case. 

ist@, x) E To iff To l--z, ist(?, x) 
Now by (?%VO lemma) and the definedness condition 
Vocab@e * i?) 5 Vocab we have 

To l-z,, ist(7, x) iff (Vv E ?3Xo(i?))(i7(~) = 1) 
By the definition of satisfaction: 

(Vv E Dl0(72))(Y(x) = 1) iff 1)320 FE0 ist(iZ,)o 
Now since D(,,,,,,-l) E To, and by (9Ji?o lemma) 
we obtain: 

?YJZo FE0 ist(i?,x) iff 9X0 bzo ist*(i?,)o 

Case D(,l,e,,-l) @ TO: Let j be the index of the 
first inconsistent context; formally D(,,,....++ $ To 
and D( nl*...*Kj-l) E To. Then for all 4 satisfying the 
definedness condition we have list (Ki * . . . * ~j, q5 A 
14) +Z To. Now by maximal consistency of To, (K*) 
and (MP) 
ist(Ki *. . **Kj, +AT~) E To iff ist(ni*. * .*Kj, $) E To 

Thus, T(zowcl*...wcj)+ is inconsistent, 9720 (Ee * ~1 * . a . * 
Kj) = 0, and consequently 
ist(&i *. . .*Kj, 4) E To iff ?7Xo bxo ist(Ki*.. .*Kj, 4) 
for all 4 such that Vocab(Es * KI* * - - * Kj, 4) E Vocab. 
Then by reasoning similar to the previous case we get: 

ist*(?,;y) E To iff ?3Xa bzo ist*(?, x). 
Note that in the entire proof of the inductive step for 
ist, we did not need the inductive hypothesis, making 
use only of the special form of x which is guaranteed 
because $J is in CNF. qruth-Iemma 
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Correspondence Results 
In this section we provide soundness and completeness 
results for several extensions of the general system. 
correspond to certain intuitive principles concerning 
the nature of contexts. In each extension the syntax 
and semantics is the same as in the general case, and 
the (definedness convention) still holds. Only the 
class of models and axioms are modified. 

Consistency 
Sometimes it is desirable to ensure that all contexts 
are consistent. 

In this system we examine the class, Gnsistent, of 
consistent models. A model 9X E CZonsistent iff for any 
context sequence E E Dom(!JJX), 

!m(iz) # 0. 

The following axiom schema is sound with respect 
to the class of consistent models Gnsbtent: 

(D) l-z ist(E, 14) + +.st(K, 4) 
Axiom schema (D) is also commonly used in modal 
logic, and is sound and complete for the set of serial 
Kripke frames, in which for each world there is another 
world from which it is accessible from. Note that axiom 
(D) is equivalent to 

i--z ist(K, 4 A 14). 

Theorem (completeness): The general context 
system with (D) axiom schema is complete with re- 
spect to the set of models Eons&tent. 

Flatness 
For some applications all contexts will be identical 
regardless of where they are examined from. This 
type of situation will often arise when we use a num- 
ber of independent databases. For example, if I am 
booked on flight 921 in the context of the Northwest 
airlines database, then regardless of which travel agent 
I choose, in the context of that travel agent, it is true 
that in the context of Northwest airlines I am booked 
on flight 921. 

In this system we examine a class, 5Iat, of what we 
call flat models. A model %R is flat, formally 9X E Slat 
iff Dom(im) = K* and for any context sequences ~1 
and &, and any context K, 

rn(izl * 6) = rn(ic2 * 6). 
When dealing with flat models it might be more in- 

tuitive to think of individual contexts rather then con- 
text sequences. Then 311 E Slat can be viewed as a 
function which maps contexts to finite sets of partial 
truth assignments, in other words 

?m E Ku {e} I+ P(IP dp 2). 
with the side condition of general models that still ap- 
plies: 

(VE E JRJ{E))(V VI, v2 E SI(E))(Dom(v~) = Dom(v2)) 
The following flatness axiom schemas are sound with 

respect to the class of flat models Slat: 

(Fl+) t-z ist(K2, ist(Ki, 4)) f) is+% 4) 

(FL) l-z ist(K2, list(&i, 4)) --+ +st(Ki, 4) 

providing the vocabulary also satisfies the flatness con- 
dition: for any context sequences Tt;i and X2, and any 
context K, 

Vocab(El * K) = Vocab(& * K). 

The backward direction of the flatness axiom 
schemas (Fl+) corresponds of the modal logic axiom 
schema S4 (provided that ~1 is the same as ~2). Sim- 
ilarly, the converse of (FL) corresponds to the modal 
logic axiom schema S5. Note that the converse of (FL) 
is a theorem in the system. 

It is interesting to observe that in every system with 
($‘I+) and (FL), (H)) is also derivable. In semantic 
terms, this means that any flat model is also a con- 
sistent model; a reasonable property for if a context 
was inconsistent, then in that context it would be true 
that all other contexts are also inconsistent. Due to 
flatness, this would really make all the other contexts 
inconsistent. 

Theorem (completeness) : The general context 
system with (Fl+) and (FL) axiom schemas is com- 
plete with respect to the set of flat models Slat. 

Truth 
It might be more intuitive to define the ist modality 
to correspond to truth rather than validity; incidently 
this is also where the ist predicate got its name: is 
true. Truth based interpretation of the basic context 
modality also corresponds to the original suggestions 
by McCarthy [McCarthy, 19931. In this case a context 
is associated with a single truth assignment rather than 
a set of truth assignments. 

We examine the class, Truth, of truth models. A 
model 9X is a truth model, formally 9JiY E Zruth iff for 
any context sequence E E Dam(m), 

The following axiom schema is sound with respect 
to the class of truth models Zrutlj: 

(Tr) I--F ist(K, 4) V ist(K, +) 

Note that (Tkr) is the converse of (D) . 

Theorem (completeness): The general context 
system with (Tr) axiom schema is complete with re- 
spect to the set of truth models Truth. 
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Previously we said that (A+) and (A-) are derivable 
in a system which contains (D) and (Tr) . In fact, a 
stronger formula is true of this system: 

l-z ist(K, # V $) f) (ist(K, 4) V ist(6, $)). 

Meaninglessness as Falsity 
In this section we examine a slightly more elaborate 
modification of the general system. This modifica- 
tion closely models the semantics described, but not 
investigated, in [Guha, 19911. The general idea here is 
that if 4 is not in the vocabulary of K, then ist(K, 4) 
is taken to be false instead of meaningless or unde- 
fined. To cater faithfully to this interpretation, two 
changes must be made to the semantics of the gen- 
eral system. Firstly, the ist clause in the definition of 
Vocab : lK* x W -+ P(K* x p) must be altered to reflect 
the fact that ist(lc,4) will always be in the vocabu- 
lary of any context. Secondly, the ist clause in the 
definition of satisfaction must also be modified. The 
appropriate new clause in the definition of Vocab is: 

Vocab@, 4) = 0 if 4 is ist(K, $0) 

While the new clause in the definition of satisfaction 
is: 

9X, u b, ist(Ki, 4) iff Vocab(+, ?? * ~1) E Vocab(l)n) 
and for all vi E (i? * ~1)~ 9X, ~1 kZeK1 4 

The other clauses in both definitions remain the same, 
modulo the fact that all occurrences of Vocab in the 
definition of satisfaction now refer to the new defini- 
tion. We maintain the (definedness convention) in 
stating the proof system for this version, but again we 
point out that all occurrences of Vocab now refers to 
the new definition. The proof system for this version 
consists of the axioms and rules of the general system, 
together with the new axiom: 

(MF) t-z +st(Ki,+) if Vocab(K * t~l,$) g Vocab 

The completeness proof for this system is struc- 
turally similar to the one described in this paper. The 
only new points are those that arise out of the liberal 
definition of Vocab. 

elated Work 
Our work is largely based on McCarthy’s ideas on 
context. McCarthy’s research [McCarthy, 1987; Mc- 
Carthy, 19931 in formalizing common sense has led him 
to believe that in order to achieve human-like gener- 
ality in reasoning, we need to develop a formal theory 
of context. The key idea in McCarthy’s proposal was 
to to treat contexts as formal objects, which enables 
one to state that a proposition is true in a context: 
ist(n, 4) where 4 is a proposition and K is a context. 
This permits axiomatizations in a limited context to be 
expanded so as to transcend their original limitations. 

There has been other research done in this area, most 
notable is the work of Lifschitz, Shoham, and Guha. 
We briefly treat each in turn. 

Two contexts can differ in, at least, three ways: they 
may have different vocabularies; or they may have the 
same vocabulary but describe different states of affairs, 
or (in the first order case) they may have the same vo- 
cabulary (i.e. language) but treat it differently (i.e the 
arities may not be the same). The first two differences 
were studied in [BuvaE, 19921, and led to two differ- 
ent views on the use of context. Lifschitz’s early note 
on formalizing context [Lifschitz, 19861 concentrates on 
the third difference. Shoham, in his work on contexts, 
concentrates on the second difference [Shoham, 19911. 
Every proposition is meaningful in every context, but 
the same proposition can have different truth values 
in different contexts. Shoham approached the task of 
formalizing context from the perspective of modal and 
non-classical of logics. He defines a propositional lan- 
guage with an analogue to the ist modality, and a 
relation ~1 e > ~2, expressing that context ~1 is as 
general as context ~2. Drawing on the intuitive anal- 
ogy between a context K and the proposition current- 
context(K), Shoham identifies the set of contexts with 
the set of propositions. This enables him to define 
truth in a context ist(K,p), in terms of the the condi- 
tional current-context(K) -+ p, where + is interpreted 
as as some form of intuitionistic or relevance implica- 
tion. His paper gives a list of 14 benchmark sentences 
which characterize this implication. 

Guha’s dissertation contains a number of examples 
of context use. These demonstrate how reasoning with 
contexts should behave, and which properties a formal- 
ization of context should exhibit. The Cyc knowledge 
base [Guha and Lenat, 19901, which is the main moti- 
vation for Guha’s context research, is made up of many 
theories, called micro-theories, describing different as- 
pects of the world. Guha has tailored the design of 
micro-theories after contexts. 

There is also a clear parallel between the logic of 
context and the modal logics of knowledge and be- 
lief [Halpern and Moses, 19921. The modality ist(K, 4) 
may be interpreted as expressing that the agent K 
knows or believes the sentence 4. In the case where 
there is only one context, our formal system collapses 
to a normal system of modal logic (with two additional 
axiom schemas (A+) and (A-)). This is analogous to 
the way logics of knowledge and belief collapse to a 
normal system of modal logic in case of a single agent. 
However, the logics of knowledge and belief differ from 
our logic of contexts in a number of ways: Firstly, log- 
its of knowledge and belief do not deal with variable 
vocabularies and the corresponding partiality. Fur- 
thermore, logics of knowledge and belief are usually 
ascribed possible world semantics. Consequently, an 
agent’s belief is modeled by relations between worlds. 
Modeling truth or validity in a context by a relation be- 
tween worlds would not be intuitive because we want 
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contexts to be reified as first class objects in the se- 
mantics. This will allow us (in the predicate case) to 
state relations between contexts, define operations on 
contexts, and specify how sentences from one context 
can be Zifted into another context. 

Conclusions and Future Work 
Our goal is to extend the system to a full quantifica- 
tion logic. One advantage of quantificational system is 
that it enables us to express relations between context, 
operations on contexts, and state lifting rules which 
describe how a fact from one context can be used in 
another context. However, in the presence of context 
variables it might not be possible to define the vocab- 
ulary of a sentence without knowing which object a 
variable is bound to. Therefore the first step in this 
direction is to to examine propositional systems with 
dynamic definitions of meaningfulness. 

We also plan to define non-Hilbert style formal sys- 
tems for context. Probably the most relevant is a natu- 
ral deduction system, which would be in line with Mc- 
Carthy’s original proposal of treating contextual rea- 
soning as a strong version of natural deduction. In such 
a system, entering a context would correspond to mak- 
ing an assumption in natural deduction, while exiting 
a context corresponds to discharging an assumption. 

Finally, it would be interesting to show some for- 
mal properties of our logic. These include defining a 
decision procedure, in the style of [Mints, 19921. 
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